TouR-mediated effector-independent growth phase-dependent activation of the sigma54 Ptou promoter of Pseudomonas stutzeri OX1.

نویسندگان

  • Dafne Solera
  • Fabio L G Arenghi
  • Tanja Woelk
  • Enrica Galli
  • Paola Barbieri
چکیده

Transcription of the catabolic touABCDEF operon, encoding the toluene-o-xylene monooxygenase of Pseudomonas stutzeri OX1, is driven by the sigma(54)-dependent Ptou promoter, whose activity is controlled by the phenol-responsive NtrC-like activator TouR. In this paper we describe for the first time a peculiar characteristic of this system, namely, that Ptou transcription is activated in a growth phase-dependent manner in the absence of genuine effectors of the cognate TouR regulator. This phenomenon, which we named gratuitous activation, was observed in the native strain P. stutzeri OX1, as well as in a Pseudomonas putida PaW340 host harboring the reconstructed tou regulatory circuit. Regulator-promoter swapping experiments demonstrated that the presence of TouR is necessary and sufficient for imposing gratuitous activation on the Ptou promoter, as well as on other sigma(54)-dependent catabolic promoters, whereas the highly similar phenol-responsive activator DmpR is unable to activate the Ptou promoter in the absence of effectors. We show that this phenomenon is specifically triggered by carbon source exhaustion but not by nitrogen starvation. An updated model of the tou regulatory circuit is presented.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification of the Pseudomonas stutzeri OX1 toluene-o-xylene monooxygenase regulatory gene (touR) and of its cognate promoter.

Toluene-o-xylene monooxygenase is an enzymatic complex, encoded by the touABCDEF genes, responsible for the early stages of toluene and o-xylene degradation in Pseudomonas stutzeri OX1. In order to identify the loci involved in the transcriptional regulation of the tou gene cluster, deletion analysis and complementation studies were carried out with Pseudomonas putida PaW340 as a heterologous h...

متن کامل

Functional redundancy in phenol and toluene degradation in Pseudomonas stutzeri strains isolated from the Baltic Sea.

In the present study we describe functional redundancy of bacterial multicomponent monooxygenases (toluene monooxygenase (TMO) and toluene/xylene monooxygenase (XylAM) of TOL pathway) and cooperative genetic regulation at the expression of the respective catabolic operons by touR and xylR encoded regulatory circuits in five phenol- and toluene-degrading Pseudomonas stutzeri strains. In these st...

متن کامل

Activation and repression of transcription at the double tandem divergent promoters for the xylR and xylS genes of the TOL plasmid of Pseudomonas putida.

The xylR and xylS genes are divergent and control transcription of the TOL plasmid catabolic pathways for toluene metabolism. Four promoters are found in the 300-bp intergenic region: Pr1 and Pr2 are constitutive sigma70-dependent tandem promoters that drive expression of xylR, while expression of the xylS gene is driven from Ps2, a constitutive sigma70-dependent promoter, and by the regulatabl...

متن کامل

Organization and regulation of meta cleavage pathway genes for toluene and o-xylene derivative degradation in Pseudomonas stutzeri OX1.

Pseudomonas stutzeri OX1 meta pathway genes for toluene and o-xylene catabolism were analyzed, and loci encoding phenol hydroxylase, catechol 2,3-dioxygenase, 2-hydroxymuconate semialdehyde dehydrogenase, and 2-hydroxymuconate semialdehyde hydrolase were mapped. Phenol hydroxylase converted a broad range of substrates, as it was also able to transform the nongrowth substrates 2,4-dimethylphenol...

متن کامل

Dual regulation of mucoidy in Pseudomonas aeruginosa and sigma factor antagonism.

The conversion to mucoid, exopolysaccharide alginate-overproducing phenotype in Pseudomonas aeruginosa during chronic respiratory infections in cystic fibrosis patients occurs via mutations that activate the alternative sigma factor AlgU (sigmaE). In this study, we demonstrate that conversion to mucoidy can be caused via a second, algU-independent pathway, in which alginate production and trans...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 186 21  شماره 

صفحات  -

تاریخ انتشار 2004